ANALISIS PENYAKIT TUBERKULOSIS (TB) PADA CITRA X-RAY DENGAN EKTRAKSI FITUR SURF DAN METODE KLASIFIKASI K-NEAREST NEIGHBOR (KNN)

NURLELA OCTAVIA PURBA, LIDYA APRILLA SIREGAR, KRISTINA SINAGA, NUR AZIZAH (2020) ANALISIS PENYAKIT TUBERKULOSIS (TB) PADA CITRA X-RAY DENGAN EKTRAKSI FITUR SURF DAN METODE KLASIFIKASI K-NEAREST NEIGHBOR (KNN) , SKRIPSI, UNIVERSITAS PRIMA INDONESIA

ABSTRAK

With current technological developments, machine learning has become one of the most popular methods, one of the popular machine learning algorithms is k-nearest neighbors (KNN). Machine learning has been widely used in the medical field to analyze medical datasets, in this study the k-nearest neighbors (KNN) machine learning algorithm will be used because of its good level of accuracy in recognition and is included in the supervised learning algorithm group. The results showed the k-nearest neighbors (KNN) method in recognizing x-ray images of tuberculosis (TB) using SURF feature extraction with an average accuracy of 73%.

JURNAL
KATEGORI JURNAL Jurnal Nasional Terakreditasi
TAHUN JURNAL 2020
VOLUME JURNAL 5
NOMOR JURNAL 2
NAMA PENERBIT JAICT, Journal of Applied Information and Communication Technologies
NOMOR ISSN/ISBN 25416359
LAMAN PENERBIT (URL) https://jurnal.polines.ac.id/index.php/jaict/index
LAMAN ARTIKEL (URL) https://jurnal.polines.ac.id/index.php/jaict/article/view/1979